La presente edición con algo más de material, un poco de menos omisiones, y un reordenamiento considerable, cubre en esencia los mismos temas que la segunda. Espero que dichos cambios hagan más accesible y atractivo el material a los estudiantes que reciben tal curso.
La experiencia me ha convencido que, pedagógicamente, es erróneo (aunque desde el punto de vista lógico es correcto) comenzar con la construcción de los números reales a partir de los racionales. Simplemente en un principio, la mayoría de los estudiantes no aprecian la necesidad de hacerlo. Por esto se presenta el sistema de los números como un campo que posee la propiedad de la mínima cota superior, y se efectúan rápidamente algunas aplicaciones interesantes de esta propiedad. Sin embargo no se omite la construcción de Dedekind. Ahora se encuentra en el apéndice del capítulo 1, en donde puede estudiarse y deleitarse siempre y cuando se tenga la madurez adecuada.
Se volvió a escribir casi todo el material sobre funciones de varias variables, completándolo con muchos detalles y más motivación con ejemplos. La demostración del teorema de la función inversa, que es el tema clave del capítulo 9, se simplifica con el teorema de punto fijo referente a mapeos de contracción. Las formas diferenciales se estudian con más detalle. Se incluyen además varias aplicaciones del teorema de Stokes.
En lo que se refiere a cambios, el capítulo sobre la integral de Riemann-Stieltjes se ha equilibrado un poco; también se adicionó al capítulo 8 una pequeña sección sobre la función gama para que el lector la desarrolle, y hay un número bastante grande de ejercicios nuevos, la mayoría de ellos con sugerencias bastante detalladas.
También incluí varias referencias sobre artículos publicados en el American Mathematical Monthly y el Mathematics Magazine, esperando que a los estudiantes se les desarrolle el hábito de consultar las publicaciones científicas. R. B. Burckel muy amablemente me proporcionó la mayoría de las referencias.
0 Comentarios